Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem (Oxf) ; 5: 100139, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36262383

RESUMO

This study aimed to isolate bioactive peptides with elastase inhibitory activity from walnut meal via ultrasonic enzymatic hydrolysis. The optimal hydrolysis conditions of walnut meal protein hydrolysates (WMPHs) were obtained by response surface methodology (RSM), while a molecular weight of<3 kDa fraction was analyzed by LC-MS/MS, and 556 peptides were identified. PyRx virtual screening and Autodock Vina molecular docking revealed that the pentapeptide Phe-Phe-Val-Pro-Phe (FFVPF) could interact with elastase primarily through hydrophobic interactions, hydrogen bonds, and π-sulfur bonds, with a binding energy of -5.22 kcal/mol. The verification results of inhibitory activity showed that FFVPF had better elastase inhibitory activity, with IC50 values of 0.469 ± 0.01 mg/mL. Furthermore, FFVPF exhibited specific stability in the gastric environment. These findings suggest that the pentapeptide FFVPF from defatted walnut meal could serve as a potential source of elastase inhibitors in the food, medical, and cosmetics industries.

2.
Front Microbiol ; 11: 596306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324376

RESUMO

Baijiu is a traditional distilled beverage in China with a rich variety of aroma substances. 2,3,5,6-tetramethylpyrazine (TTMP) is an important component in Baijiu and has the function of promoting cardiovascular and cerebrovascular health. During the brewing of Baijiu, the microorganisms in jiuqu produce acetoin and then synthesize TTMP, but the yield of TTMP is very low. In this work, 2,3-butanediol dehydrogenase (BDH) coding gene BDH1 and another BDH2 gene were deleted or overexpressed to evaluate the effect on the content of acetoin and TTMP in Saccharomyces cerevisiae. The results showed that the acetoin synthesis of strain α5-D1B2 was significantly enhanced by disrupting BDH1 and overexpressing BDH2, leading to a 2.6-fold increase of TTMP production up to 10.55 mg/L. To further improve the production level of TTMP, the α-acetolactate synthase (ALS) of the pyruvate decomposition pathway was overexpressed to enhance the synthesis of diacetyl. However, replacing the promoter of the ILV2 gene with a strong promoter (PGK1p) to increase the expression level of the ILV2 gene did not result in further increased diacetyl, acetoin and TTMP production. Based on these evidences, we constructed the diploid strains AY-SB1 (ΔBDH1:loxP/ΔBDH1:loxP) and AY-SD1B2 (ΔBDH1:loxP-PGK1p-BDH2-PGK1t/ΔBDH1:loxP-PGK1p-BDH2-PGK1t) to ensure the fermentation performance of the strain is more stable in Baijiu brewing. The concentration of TTMP in AY-SB1 and AY-SD1B2 was 7.58 and 9.47 mg/L, respectively, which represented a 2.3- and 2.87-fold increase compared to the parental strain. This work provides an example for increasing TTMP production in S. cerevisiae by genetic engineering, and highlight a novel method to improve the quality and beneficial health attributes of Baijiu.

3.
Anal Chem ; 91(2): 1247-1253, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30537809

RESUMO

In this study, we present a simple, hand-powered, and electricity-free centrifuge platform based on a commercially available "fidget-spinner." The centrifugal force provided by this inexpensive and easy-to-use toy is sufficient to separate whole blood, producing a plasma yield rate and purity of 30% and 99%, respectively, separated in as little as 4-7 min. We verified the separated plasma by performing a paper-based HIV-1 p24 capsid protein enzyme-linked immunosorbent assay, which achieved a recovery rate of up to 98%, indicating the plasma features extremely low matrix interference effects. These results demonstrate the reliability of the platform for practical use, in addition to greatly reducing the overall cost and time of analysis while retaining detection precision, making it suitable for medical applications in resource-limited regions of the world.


Assuntos
Separação Celular/métodos , Plasma/citologia , Jogos e Brinquedos , Animais , Anticorpos/imunologia , Separação Celular/instrumentação , Centrifugação/instrumentação , Centrifugação/métodos , Ensaio de Imunoadsorção Enzimática , Proteína do Núcleo p24 do HIV/imunologia , HIV-1/química , Humanos , Camundongos
4.
Appl Microbiol Biotechnol ; 102(4): 1783-1795, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305698

RESUMO

Higher alcohols significantly influence the quality and flavor profiles of Chinese Baijiu. ILV1-encoded threonine deaminase, LEU1-encoded α-isopropylmalate dehydrogenase, and LEU2-encoded ß-isopropylmalate dehydrogenase are involved in the production of higher alcohols. In this work, ILV1, LEU1, and LEU2 deletions in α-type haploid, a-type haploid, and diploid Saccharomyces cerevisiae strains and ILV1, LEU1, and LEU2 single-allele deletions in diploid strains were constructed to examine the effects of these alterations on the metabolism of higher alcohols. Results showed that different genetic engineering strategies influence carbon flux and higher alcohol metabolism in different manners. Compared with the parental diploid strain, the ILV1 double-allele-deletion diploid mutant produced lower concentrations of n-propanol, active amyl alcohol, and 2-phenylethanol by 30.33, 35.58, and 11.71%, respectively. Moreover, the production of isobutanol and isoamyl alcohol increased by 326.39 and 57.6%, respectively. The LEU1 double-allele-deletion diploid mutant exhibited 14.09% increased n-propanol, 33.74% decreased isoamyl alcohol, and 13.21% decreased 2-phenylethanol production, which were similar to those of the LEU2 mutant. Furthermore, the LEU1 and LEU2 double-allele-deletion diploid mutants exhibited 41.72 and 52.18% increased isobutanol production, respectively. The effects of ILV1, LEU1, and LEU2 deletions on the production of higher alcohols by α-type and a-type haploid strains were similar to those of double-allele deletion in diploid strains. Moreover, the isobutanol production of the ILV1 single-allele-deletion diploid strain increased by 27.76%. Variations in higher alcohol production by the mutants are due to the carbon flux changes in yeast metabolism. This study could provide a valuable reference for further research on higher alcohol metabolism and future optimization of yeast strains for alcoholic beverages.


Assuntos
Bebidas Alcoólicas/microbiologia , Ciclo do Carbono/genética , Etanol/metabolismo , Microbiologia de Alimentos/métodos , Hidroliases/genética , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Treonina Desidratase/genética , 3-Isopropilmalato Desidrogenase/genética , 3-Isopropilmalato Desidrogenase/metabolismo , China , Fermentação , Deleção de Genes , Humanos , Hidroliases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina Desidratase/metabolismo
5.
J Ind Microbiol Biotechnol ; 44(3): 397-405, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28154948

RESUMO

Diacetyl causes an unwanted buttery off-flavor in lager beer. The production of diacetyl is reduced by modifying the metabolic pathway of yeast in the beer fermentation process. In this study, BDH2 and ILV5 genes, coding diacetyl reductase and acetohydroxy acid reductoisomerase, respectively, were expressed using a PGK1 promoter in Saccharomyces cerevisiae, which deleted one ILV2 allelic gene. Diacetyl contents and fermentation performances were examined and compared. Results showed that the diacetyl content in beer was remarkably reduced by 16.52% in QI2-KP (one ILV2 allelic gene deleted), 55.65% in QI2-B2Y (overexpressed BDH2 gene and one ILV2 allelic gene deleted), and 69.13% in QI2-I5Y (overexpressed ILV5 gene and one ILV2 allelic gene deleted) compared with the host strain S2. The fermentation ability of mutant strains was similar to that of S2. Results of the present study can lead to further advances in this technology and its broad application in scientific investigations and industrial beer production.


Assuntos
Oxirredutases do Álcool/genética , Diacetil/metabolismo , Deleção de Genes , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Oxirredutases do Álcool/metabolismo , Alelos , Cerveja/análise , Cerveja/microbiologia , Fermentação , Microbiologia de Alimentos , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...